Submit Manuscript  

Article Details


Breast Infrared Thermography Segmentation Based on Adaptive Tuning of a Fully Convolutional Network

Author(s):

Mazhar Basyouni Tayel and Azza Mahmoud Elbagoury*   Pages 1 - 11 ( 11 )

Abstract:


Background: Accurate segmentation of Breast Infrared Thermography is an important step for early detection of breast pathological changes. Automatic segmentation of Breast Infrared Thermography is a very challenging task, as it is difficult to find an accurate breast contour and extract regions of interest from it. Although several semi-automatic methods have been proposed for segmentation, their performance often depends on hand-crafted image features, as well as preprocessing operations.

Objective: In this work, an approach to automatic semantic segmentation the Breast Infrared Thermography is proposed based on end-to-end fully convolutional neural networks and without any pre or pos processing.

Method: The lack of labeled Breast Infrared Thermography data limits the full utilization of fully convolutional neural networks. The proposed model overcomes this challenge by applying data augmentation and two-tier transfer learning from bigger datasets combined with adaptive multi-tier fine-tuning before training the fully convolutional neural networks model.

Results: Experimental results show that the proposed approach achieves better segmentation results : 97.986% accuracy; 98.36% sensitivity and 97.61% specificity compared to hand-crafted segmentation methods.

Conclusion: This work provided an end-to-end automatic semantic segmentation of Breast Infrared Thermography combined a fully convolutional networks, adaptive multi-tier fine-tuning and transfer learning. Also, this work was able to beat on challenging of applying convolutional neural networks on such data and achieving the state-of-art accuracy.

Keywords:

AlexNet, breast infrared thermography, fully convolutional networks, fine-tuning, semantic segmentation, transfer learning.

Affiliation:

Electrical Department, Faculty of Engineering, Alexandria University, Alexandria, 2Electrical Department, Faculty of Engineering, Pharos University, Alexandria



Read Full-Text article