Submit Manuscript  

Article Details


Unsupervised end-to-end Brain Tumor Magnetic Resonance Image Registration using RBCNN: Rigid Transformation, B-Spline Transformation and Convolutional Neural Network

Author(s):

Senthil Pandi Sankareswaran* and Mahadevan Krishnan  

Abstract:


Background: Image registration is the process of aligning two or more images in a single coordinate. Now a days, medical image registration plays a significant role in computer assisted disease diagnosis, treatment, and surgery. The different modalities available in the medical image makes medical image registration as an essential step in Computer Assisted Diagnosis(CAD), Computer-Aided Therapy (CAT) and Computer-Assisted Surgery (CAS).

Problem definition: Recently many learning based methods were employed for disease detection and classification but those methods were not suitable for real time due to delayed response and need of pre alignment,labeling.

Method: The proposed research constructed a deep learning model with Rigid transform and B-Spline transform for medical image registration for an automatic brain tumour finding. The proposed research consists of two steps. First steps uses Rigid transformation based Convolutional Neural Network and the second step uses B-Spline transform based Convolutional Neural Network. The model is trained and tested with 3624 MR (Magnetic Resonance) images to assess the performance. The researchers believe that MR images helps in success the treatment of brain tumour people.

Result: The result of the proposed method is compared with the Rigid Convolutional Neural Network (CNN), Rigid CNN + Thin-Plat Spline (TPS), Affine CNN, Voxel morph, ADMIR (Affine and Deformable Medical Image Registration) and ANT(Advanced Normalization Tools) using DICE score, average symmetric surface distance (ASD), and Hausdorff distance.

Conclusion: The RBCNN model will help the physician to automatically detect and classify the brain tumor quickly(18 Sec) and efficiently with out doing any pre-alignment and labeling.

Keywords:

Medical image registrations, Deep learning, Rigid transformation, B-Spline transform, Convolutional Neural Network, Brain Tumor Magnetic Resonance Images, Advanced Normalization Tools

Affiliation:

Department of Computer Science and Engineering, Mohamed Sathak A. J. College of Engineering, Tamil Nadu, Department of Electrical and Electronics Engineering, PSNA College of Engineering and Technology, Tamil Nadu



Full Text Inquiry